Towards End-to-end Network Fault Diagnosis
Based on User-level Observations

Yongning Tang
Illinois State University
ytang@ilstu.edu

Guang Cheng
SouthEast University
Nanjing, China
gcheng@njnet.edu.cn

Zhiwei Xu
University of Michigan-Dearborn
Dearborn MI, USA
zwxu@umich.edu

Ehab Al-shaer
DePaul University
Chicago IL, USA
ehab@cs.depaul.edu

Abstract—Overlay networks have emerged as a powerful and flexible platform for developing new disruptive network applications. The attractive characteristics of overlay networks such as planetary-scale distributions, user-level flexibility (e.g., overlay routing) and manageability bring to overlay fault diagnosis new challenges, which include inaccessible underlying network information, incomplete and inaccurate network status observations; dynamic symptom-fault causality relationships, and multi-layer complexity. To address these challenges, we propose a distributed user-level Belief Revision based overlay fault diagnosis technique called EUDiag. EUDiag can passively use observed overlay symptoms as reported by overlay monitoring agents to correlate and diagnose faults, and select the least-costly appropriate probing actions whenever necessary to enhance the passive fault reasoning results. EUDiag adapts to the changes in highly dynamic overlay networks by incrementally revising user beliefs based on new observed overlay symptoms. EUDiag can diagnose faults without relying on underlying network fault probabilistic quantifications (e.g., prior fault probability). Simulations and experimental studies show that EUDiag can efficiently (e.g., low latency) and accurately localize root causes of overlay faults/problems, even when the observed symptoms are incomplete.

I. INTRODUCTION

Overlay service model [1] has been widely adopted by research community [3][6][22] as well as commercial Overlay Service Providers (OSPs) [2][5] as an effective approach to implement disruptive planetary-scale network applications. However, overlay applications are prone to variety of faults across multiple layers such as fiber cuts, router misconfigurations, or overlay node outages. These faults usually can be observed as certain end-to-end network disorders [4][29] (e.g., packet loss or abnormal latency) and manifested as trouble tickets or monitoring alerts. The performance and reliability of overlay applications depend on the capability of overlay networks to quickly and accurately detect and diagnose faults so as to dynamically adjust their topologies [8]. However, traditional fault management techniques [14][17][18] and proprietarily developed overlay fault detection and diagnosis approaches [8][12][26][29] can not satisfy new requirements and tackle new challenges in dynamic overlay networks.

A. New Challenges in Overlay Fault Diagnosis

We believe the following new characteristics and challenges decide overlay fault diagnosis has to adopt a new approach, which is the focus of this work:

• Inaccessible underlying network information and incomplete network status observation: In overlay network domain, overlay services are provisioned, operated by OSPs on the top of opaque underlying networks. Overlay fault diagnosis technique must be developed based on incomplete and insufficient user-level observations.

• Planetary-scale and widely distributed service infrastructure: Overlay services usually run across multiple ISPs and are widely distributed [2][3]. Multiple overlay applications (e.g. Yahoo, Amazon) may co-exist on top of the common overlay network infrastructure (e.g. Akamai).

• Multi-layer complexity and dynamic symptom-fault causality: In overlay networks, observed symptoms are usually not designed for monitoring specific faults (e.g. malfunctioning router interface). Symptom-fault causality relationship is dynamic and unpredictable in overlay networks.

• Fault reasoning goal and granularity: In overlay network, it becomes more interesting for overlay applications to effectively bypass detected faulty components instead of fixing them, which is very likely impossible (e.g. for components owned by ISPs). Thus, for overlay fault reasoning, coarse-grained fault reasoning result is acceptable and may be more preferable in order to improve fault diagnosis and recovery efficiency.

Considering the above challenges, we argue that in planetary-scale multi-layer overlay networks, overlay fault diagnosis should aim at the following objectives. They should:

• be able to isolate multiple simultaneous faults as well as faults on multiple layers. This feature improves the technique’s applicability to planetary-scale systems; and provides critical information for taking appropriate overlay fault recovery strategies.

• be flexible to diagnosis granularity. Overlay applications are service-oriented. The goal of overlay fault diagnosis is to help overlay applications bypass faulty components (e.g. routers in ISPs). Thus, coarse-grained diagnosis is more preferable by considering the effectiveness and performance of overlay fault diagnosis.

• be resilient to incomplete and spurious symptoms. Over-
lay fault diagnosis technique should be robust and effective in handling incomplete or even spurious symptoms.

- **be distributed and collaborative.** Scalability and wide distribution of overlay applications [2] decide that overlay fault diagnosis has to adopt a distributed approach collaboratively to improve the diagnosis performance, minimize network intrusiveness and tackle observation incompleteness.

- **be adaptive to new observations.** Previous diagnosis result should be incrementally revisable by considering new evidence/symptoms.

- **be efficient and reasonably accurate.** Overlay fault diagnosis accuracy should be considered as a trade-off between response time and overlay recovery effectiveness.

- **be passive and active integrated.** If passive diagnosis results are not sufficient and satisfactory in terms of their credibility, a set of optimally selected probing actions should be selected to actively discover more fault indications to facilitate overlay fault diagnosis process.

B. Our Contributions

This paper investigated an interesting and timely problem: overlay fault diagnosis, from user perspective without relying on any probability fault diagnosis model. The paper makes the following contributions to the field of overlay fault diagnosis.

- It advances the state-of-the-art in overlay fault diagnosis by providing a novel user-level overlay fault reasoning framework. To the best of our knowledge, this is the first comprehensive user-level distributed and collaborative overlay fault diagnosis framework.

- It proposes a novel concept **Belief Revision** to flexibly correlate dynamic overlay symptom-fault causality, which can also be incrementally revised when new symptoms observed.

- It seamlessly incorporates active actions into passive fault reasoning process to achieve better diagnosis performance and accuracy.

- It provides an unified framework with incremental **Belief Revision** capability for OSPs collaboratively sharing monitoring information. The experiments also show **Collaboration Gain** for OSPs by sharing network observations.

The paper is organized as the following. In Section II, we formalize the problems and overview EUDiag system. In Section III, we introduce the concept of **Belief Revision** and elaborate technique details of EUDiag. In Section IV, we present our simulation studies and real experiment results to evaluate EUDiag performance and accuracy. In Section VI, related work is discussed. Section VII gives our conclusions and future work.

II. SYSTEM OVERVIEW AND PROBLEM FORMALIZATION

The aim of this work is to provide a general and practical fault diagnosis framework for overlay users, developers and operators (e.g. Planet-lab [3], Akamai [2]) to collaboratively monitor and analyze overlay network status and identify faults (e.g. the overlay or underlay component which caused packet loss) that degrade the application performance. Overlay service model aims at providing planetary-scale services on the top of wide area underlying network infrastructure (e.g. the Internet).

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>OVERLAY NETWORK DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay Service Providers</td>
<td>Planet-Lab</td>
</tr>
<tr>
<td>Nodes</td>
<td>~800</td>
</tr>
<tr>
<td>Networks</td>
<td>~400</td>
</tr>
<tr>
<td>Countries</td>
<td>~30</td>
</tr>
<tr>
<td>Applications</td>
<td>CoDecN, CoralCDN</td>
</tr>
</tbody>
</table>

As shown in TABLE I, OSPs usually provide planetary-scale network infrastructure and host multiple long-running overlay applications. However, among OSPs and even among applications hosted by the same OSP, they usually do not share monitoring information and use their own monitoring systems, which may still rely on centralized monitoring mechanism (e.g. [4]) to aggregate widely distributed and less likely relevant events. As shown in [13], the stability of edge network is less than backbone network. Thus, proximal users’ observation (based on geographical or network distribution) are more likely relevant. Thus, to tackle the above inefficiency, we propose a new overlay diagnosis framework called EUDiag, which adopts a distributed and collaborative approach such that it can (1) effectively deal with observation incompleteness by collaboratively sharing information; (2) efficiently aggregate relevant events/observations in a distributed fashion.

In EUDiag framework, there are a set of Overlay Service Providers as $O = \{OSP_1, OSP_2, \ldots, OSP_N\}$. For each OSP_i, it hosts a set of overlay applications $APP_i = \{app_{i1}, app_{i2}, \ldots, app_{iM}\}$. For each overlay application app_{ij} hosted by OSP_i, it may generate a set of symptoms $S_{ij} = \{s_{ij1}, s_{ij2}, \ldots, s_{ijQ}\}$. We assume all OSPs collaboratively host a monitoring infrastructure that consists of a set of well-distributed overlay monitoring agents (m_k) $M = \{m_1, m_2, \ldots, m_K\}$. Accordingly, each application app_{ij} may also designate K application monitoring agents (denoted as $appAgents_{ij}^k$). Here, $1 \leq i \leq N, 1 \leq j \leq M, 1 \leq k \leq K; K, M, N \geq 1$. Overlay application nodes should report observed symptoms to their proximate $appAgents_{ij}^k$, which further aggregated to m_k. There are many techniques proposed for finding proximate agents such as the one discussed in [10]. In this manner, the symptoms from same application app_{ij} are partitioned into $S_{ij} = s_{ij1}^1 \cup s_{ij2}^2 \cdots \cup s_{ijQ}^K$.

For each distributed overlay monitoring agent m_k, the process of overlay fault diagnosis is to find credible hypothesis (H_k), which can best explain all received symptoms $\{s_{ij}^k\}$. In order to make the following discussion easier and clearer, we first define a few important concepts and their notations in overlay network context.

Definition 1: Overlay Network Component Set (C): C consists of Overlay Component Set C^o and Underlay Component Set C^u ($C = C^o \cup C^u$). In EUDiag framework, each object c
(c ∈ C) is assigned an unique ID as the following: if c ∈ C^o (e.g., overlay node), c has a 1-byte prefix equal to "1"; if c ∈ C^u (e.g., network router), c has a 1-byte prefix equal to "0". The suffix of each object is a 128-bit output from hash function (e.g. MD5) H(getASN(c), getNetID(c)). Here, getASN and getNetID are two utility functions to obtain AS number (ASN) and corresponding network ID (NetID) of a given component c. In order to avoid ambiguity of Variable Length Subnet Masking (VLSM) adopted in CIDR notation, and considering the coarse-granular overlay fault diagnosis feature, we simply use original classful network ID as NetID of a given component. We believe the granularity given by NetID is sufficient for overlay applications to take necessary countermeasures. Thus, in EUDiag framework, each component is assigned a 136-bit unique component ID.

This reduction can significantly improve the efficiency of fault diagnosis in EUDiag without losing necessary granularity. Each component (c_i) may consist of multiple physical hops, which may have different prior fault effect. We define a parameter called Component Weight (W(c_i)), a number of physical hops contained in c_i, to describe such characteristic. For overlay nodes existing on end-user networks (EUN), their weights are all set to 1.

EUDiag does not assume knowing or be able to discover complete network members (e.g. underlying routers in ASes). For the unidentifiable network portion (e.g. routers don’t response to traceroute), we compute hash function on the following 4-tuple: the ASN and NetID of the hops before and after the unidentifiable network portion.

Definition 2: Overlay Symptoms (S): Network symptoms can be classified into two categories and represented differently. In EUDiag, Overlay Symptoms are defined as end-to-end observations of network disorders (e.g. reachability outage or packet loss) on overlay links. For simplicity without losing generality, we assume the category of all overlay symptoms are same (e.g. packet loss). Thus, each overlay symptom (s) can be simply represented by a sequence of overlay network components.

The symptoms could be positive or negative. Negative symptoms (also denoted as S^N, s_i, (s_i ∈ S)) indicate certain network disorder that involves at least two of the identifiable components (overlay or underlay). Negative symptoms can be generated as a result of application notification or monitoring probing. However, positive symptoms (also denoted as S^P) s_i^P, which could be inferred only as a result of infrastructure monitoring probing, indicate healthy status for all identifiable components in the diagnosed path.

Definition 3: Overlay Faults (F): F is a set of faulty components. If the corresponding faulty components are overlay components, we call them overlay faults denoted as F^o. Similarly, if the corresponding components are underlay components, we call them underlay faults denoted as F^u. F = F^o ∪ F^u. Distinguishing faults between overlay and underlay components has significant impact on overlay fault recovery. Generally, if the fault is caused by F^o, an overlay application may easily choose a backup overlay node from the same site. On the other hand, if the fault is caused by F^u, then an overlay application need find another overlay node [8] to bypass the faulty underlay components.

III. OVERLAY FAULT DIAGNOSIS USING BELIEF REVISION

A. User Beliefs

Overlay fault diagnosis has to be conducted from user-level. Many intelligent tools/utilities were proposed for end users to generate more informative symptoms [32][31][27]. However, how to systematically combine/integrate User Beliefs to find best explanation for observed symptoms is an unresolved issue.

Belief Function can be defined specifically based on the given problem domain. To make it more applicable, EUDiag is designed based on four most common but critical User Beliefs in overlay fault diagnosis domain. In the following, we first discuss these four User Beliefs (knowledge), then introduce a novel mechanism to compute User Belief value:

- **Belief-1**: Generally, overlay component has higher prior fault probability than underlay component [4][13]. Thus we have p(c_1) ≥ p(c_2). Here, c_1 and c_2 represent any overlay and underlay component respectively. For instance, the prior fault probability of network router can be safely estimated less than 10^{-4}. However, the prior fault probability of overlay node can be commonly greater than 10^{-2} [4]. Thus, we prefer using overlay components to explain observed overlay symptoms.

- **Belief-2**: The probability of simultaneous underlay faults is low [14][17]. The underlying faults for a logic underlay component c_i may contain multiple physical components. Thus, the prior fault probability of a logic underlay component c_i increases with the more contained physical components (p(c_i) = 1 - (1-p)^N, p is estimated average prior fault probability of each physical component). Thus, we prefer using least weight components to explain maximum number of symptoms.

- **Belief-3**: The probability of multiple appAgents generate false alarms simultaneously is low [17][16]. Thus, the same component the more symptoms associated with or a hypothesis (a set of components which explains observed symptoms), the more likely the component is faulty or the hypothesis is true.

- **Belief-4**: If negative overlay symptom is received, we believe at least one component (either overlay or underlay component) is faulty; if positive symptom received, we believe all relevant components are in good status [14][16].
symptom (e.g. s₄ in Fig. 1), we still can make reasonable fault inference that at least one of the components (e.g. 1c₆, 0c₈, 1c₇) is faulty based on Belief-4. Thus, we have the following hypotheses: h₁ = {1c₆}; h₂ = {0c₈}; h₃ = {1c₇}; h₄ = {1c₆, 0c₇}; ...; h₇ = {1c₆, 0c₈, 1c₇}. According to Belief-2, we believe h₁, h₂, h₃ are more likely to happen. Further, according to Belief-1, we want to conclude that h₁ or h₃ should be considered first. If we have the knowledge on prior fault probabilities (p(1c₆) and p(1c₇)) of overlay nodes 1c₆ and 1c₇, then one of the candidates with higher prior fault probability should be investigated first. In another example, if the monitoring agent mₖ received both s₂ and s₃, according to Belief-2, we make a hypothesis h = {0c₃, 1c₄}. Then we need combining Belief-1 and Belief-2 to choose between 0c₃ and 1c₄. The challenge here is how to automate such intelligent analysis process by properly combining all user beliefs with appropriate and adjustable belief weights, which decide the effect of different beliefs in final decision.

B. Incremental Belief Revision

We propose a novel user-level Belief Function (BF) (as shown in Eq.1) that seamlessly integrates and quantify all above User Beliefs with the consideration of weight adjustability and belief incremental revision capability. Different overlay fault diagnosis system can adjust several system parameters to optimize the belief weights and improve the credibility of Belief Revision function. In Fault Reasoning module, we use the Belief Function (BF) as a criteria to find faulty component that have maximal indications explaining observed overlay symptoms.

\[
BF(c_i) = [1 - \prod_{a \in A_{S_{c_i}}} p(a)] \times [\gamma |S_{c_i}| + (1 + PF(c_i) \times K)W(c_i)]
\]

(1)

The Belief Function BF(cᵢ) is elaborated as the following:
- \(S_{c_i} \) is the set of observed overlay symptoms that contain the same component \(c_i \). \(|S_{c_i}| \), the size of such symptom set, shows the strength of observed indications regarding if the component \(c_i \) could be faulty. For example, in Fig.1, if we received all symptoms, then \(|S_{0c₃}| = 2 \);
- \(A_{S_{c_i}} \) is the set of different application monitoring agents (\(appAgent^{k}_{ij} \)) reporting the symptoms contained in \(S_{c_i} \);
- \(p(a) \) is the probability that a monitoring agent (\(appAgent^{k}_{ij} \)) sends false alarms or spurious symptoms, which can be observed based the corresponding agent’s historic records. For example, the ratio of the total number of reported false alarms over the total number of reported symptoms. Initially \(p(a) \) is set to 0, which means the system initially trusts all monitoring agents. Thus, \((1 - \prod_{a \in A_{S_{c_i}}} p(a)) \) shows that the probability that at least one monitoring agent in \(A_{S_{c_i}} \) reports the true observations;
- \(W(c_i) \) is the weight of component \(c_i \), the number of individual network hops/routers in this component. The higher the value of \(W(c_i) \) is, the more chance that \(c_i \) may become faulty by considering \([1 - (1 - p)]^{W(c_i)} \) as the probability of one physical machines contained in \(c_i \) faulty (p is the prior fault probability of a physical machine which we don’t need to know).
- \(PF \) is an utility function to get the prefix of the component \(c_i \) to distinguish overlay and underlay components.
- \(K (K \geq 1) \) is the overlay weight parameter used to reflect the fact that the average overlay component prior fault probability is much higher than underlay component’s. However, \(K \) should be adjusted to reflect the real system. \(K \) can be estimated by performance metrics (e.g. average upTime, average packet drop ratio);
- \(\gamma (\gamma > 0) \) is a system parameter to adjust the effect (belief weight) of estimated prior knowledge (\(K \) and \(W(c_i) \)) and posterior observations (\(S_{c_i} \)).

Before performing Belief Revision calculation, the pre-processing should be conducted to remove all components contained by \(S^P \) from the component set covered by \(S^N \). This pre-processing could effectively reduce irrelevant components from investigated component set.

Incremental Belief Revision with New Evidence: Since individual monitoring agent may continuously receive new symptoms, and collaboration among monitoring agents may also need correlate distributed User Beliefs, it is important that Belief Revision can be incrementally conducted based on previous User Belief result and new evidence. Here we do not consider temporal correlations among observed symptoms and assume Belief Revision are conducted within valid observation time window. We mark the consideration of integrating temporal factor into Belief Revision as our future work.

Let \(T_n = \prod_{a \in A_{S_{c_i}}} p(a) \) and \(S'_{c_i} = \{s'\} \cap S_{c_i} \) (\(s' \) is the new observed symptom), we have the following incremental Belief Revision formula as shown in Eq.2. By using the previous User Belief result \(BF^n \) and \(T_n \), as well as the spurious symptom rate of the \(appAgent \) that reported the new symptom, we can efficiently revise the previous User Belief to produce a new revised User Belief \(BF^{n+1} \). This is a critical feature in achieving incremental local Belief Revision and global belief...
aggregation and revision capabilities.

\[BF^{n+1}(c_i|S'_c) = (1 + p(a_{c^*}) + \frac{p(a_{c^*}) - T_n}{T_n}) BF^n(c_i|S_c) + (1 + \gamma)T_n + (\gamma T_n - 1)p(a_{c^*}) \]

\[\simeq (1 + 2p(a_{c^*})) BF^n(c_i|S_c) + (1 + \gamma)T_n + (\gamma T_n - 1)p(a_{c^*}) \]

(2)

C. Distributed & Collaborative Overlay Fault Reasoning

Once having User Belief on each candidate component, we need properly define a Belief Threshold \(B_{TF} \) to evaluate the obtained User Beliefs. \(B_{TF} \) is model-dependent and should be considered as a trade-off among fault detection rate, false alarm rate and detection time. For all components (\(c_i \)) with \(BF(c_i) > B_{TF} \), we can dynamically create the following Overlay Reasoning Belief Graph (ORBG):

- For every selected overlay or underlay components with enough User Belief (e.g. \(BF(c_i) > B_{TF} \)), associate a vertex \(c_i \);
- For every overlay symptom containing at least one component with enough User Belief, associate a vertex \(s_j \);
- For every selected component \(c_i \) and its related symptoms, associate an edge \(e_{ij} \) with weight equal to \(BF(c_i) \);

Given ORRG, the task of fault reasoning is to find a minimal set of components (the hypotheses) that can explain all observed symptoms. This a typical Set-covering problem that has been proven a NP-hard problem. We use a greedy search approximation algorithm to fine one, or multiple hypotheses in the case all hypotheses having same User Belief value. Among multiple hypotheses, we choose the one with maximum value of \(\sum_{c_i \in h} BF(c_i)/|h| \).

D. Credibility Evaluation of Fault Hypotheses

The fault hypotheses created by Overlay Fault Reasoning module may not accurately determine the root faults because of incomplete symptom observation. Credibility Evaluation is to measure the hypothesis credibility created in Fault Reasoning phase. How to objectively evaluate the reasoning result is crucial and also challenging. We developed a Credibility Function \(CF(h) \) to measure the credibility of hypothesis \(h \) that used to explain observed symptom \(S \).

\[CF(h) = \frac{\sum_{c_i \in h} BF(c_i)}{\sum_{s_j \in S} \left(2K + \sum_{c_i \in C_{s_j}} W(c_i)\right)} \]

(3)

\(CF(h) \) is essentially the likelihood measurement of the hypothesis \(h \) by averaging total User Beliefs over all components contained in observed symptoms \(S \). Here, \(K \) is the overlay weight factor, and each overlay symptom involves two overlay nodes. Since the maximal credibility value can not be obtained because of the incompleteness property of ORBG, intuitively, the more relevant symptoms observed and less relevant components involved, the higher credibility can be achieved. We develop a credibility algorithm taking into consideration a target Credibility Threshold, \(C_{\text{threshold}} \), that the user can configure to accept hypothesis. The initial observation is usually not sufficient. Active actions have to be conducted to enhance or reduce the belief on the proposed hypothesis. If the threshold is set too high, even correct hypothesis will be ignored; but if the threshold is too low, then less credible hypothesis might be selected. Overlay network administrators can define the threshold based on long-term observation and previous experience (e.g. detection rate and false alarm ratio).

E. Action Selection Heuristic Algorithm

We take active actions whenever initial symptom observation is not sufficient or reasoning result is not satisfactory. The action results could provide more relevant symptoms (either positive or negative) which can be used to (1) collect more evidence to increase User Belief; or (2) verify the correctness of given hypothesis. Active actions could be as common as common network utilities Ping, traceroute, or specifically designed network tools [32], [27], [31], [30]. Different overlay application may offer different action set based on various factors, such as running platform, availability. Each action can be associated with a cost value (denoted as \(T_i \)) administratively with the consideration such as network intrusiveness or coverage (e.g. number of hops), overlay node importance, security risk, etc..

For simplicity, we use \(C \) to represent components need be verified in the following. Given a set of components \(C = \{C_1, C_2, \ldots, C_N\} \), and a set of actions \(A = \{A_1, A_2, \ldots, A_M\} \), here each action has its coverage denoted as: \(A_i = \{C_1, C_2, \ldots, C_N\} \) (\(A_i \in A \)). Obviously \(C \subseteq \cup_{A_i \in A} A_i \). Action Selection is to find a set of actions \(A' (A' \subseteq A) \) such that: (1) all components in \(C \) are covered; (2) the total cost \(T = \sum_{A_i \in A'} T(A_i) \) is minimized.

The task of Action Selection is to find the least-cost actions to verify all components \(C \) included in the hypothesis that has highest credibility. As the size of \(C \) could grows very large, the process of selecting the minimal cost action that verifies \(C \) becomes non-trivial. This problem can be modelled as a weighted set-covering problem, which is NP-complete. Thus, we developed a heuristic greedy set-covering approximation algorithm to solve this problem.

IV. SYSTEM EVALUATION

In this section, we present our evaluation metrics, simulation methodology and simulation results.

A. Evaluation Metrics

The performance and accuracy are the two most important factors for evaluating fault diagnosis techniques. Performance is measured by fault detection time \(T \), which is the time between receiving the fault symptoms and identifying the root faults. The fault diagnostic accuracy depends on two factors: (1) the detection ratio (\(\alpha \)), which is the ratio of the number of \(F_d \) true detected root faults (\(F_d \) is the total detected fault set) to the number of \(F_m \) actual monitored and occurred faults; formally \(\alpha = \frac{|F_d|}{|F_m|} \); and (2) false positive ratio (\(\beta \)), which is the ratio of the number of \(F_{fa} \) false reported faults to the total number of detected faults; formally \(\beta = \frac{|F_{fa}|}{|F_d|} \) [17]. The
scalability and robustness are also critical for a distributed fault diagnosis system.

B. Simulation Methodology

We consider the following dimensions and parameters for simulation.

- **Underlying Network Topology and Size**: We use a synthetic topology generator BRITE [23] with three types of topology model. The number of nodes ranges from 100 to 30,000. In addition, we import to BRITE using real network AS topology data from Skitter [24] with each set more than 20,000 ASes for evaluation.

- **Overlay Network Topology**: The distribution of overlay nodes provides different observation points and may significantly impact the performance of **EUDiag**. We define three different overlay topologies: edge overlay (overlay nodes located on edge networks); core overlay (overlay nodes located on core networks); mixed overlay (overlay nodes located on both edge and core networks).

- **Overlay Weight K and system parameter γ**: K and γ are model-dependent and should be properly adjusted to reflect the real system characteristics. We assign overlay nodes with prior fault probability uniformly distributed among 1-30%.

- **Link Loss Distribution**: We adopt LLRD[1] model as shown in [11], 95% links are classified as reliable with prior fault probability uniformly distributed among 0−0.3%; 5% links are classified as faulty with prior fault distributed on 5−10%.

C. The Impact of Network Topology and Size

There are four types topologies simulated by using BR-TIE [23]: (1) AS-level Waxman model; (2) AS-level Barabasi-Albert model; (3) Hierarchical model; (4) Skitter [24]. For the first three topology model, we simulate three different scenarios: (1) use small-size network (nodes between 100 and 1,000 and placed in relatively small area of the plane) to simulate regional collaborative ISPs and their overlay networks; (2) use medium-size network (nodes between 1,000 and 10,000 and wide-distributively placed in the plane) to simulate national collaborative ISPs and their overlay networks; (3) use large-scale network (nodes between 10,000 and 30,000) to simulate the Internet. For each generated topology, we select 10% of total nodes as overlay nodes with the three distribution: edge, core and mixed overlay topology. Then we run simulation 10 times independently. We found the different overlay topologies showing similar results with given underlay topology. In the following, we will only show the results using mixed overlay topology.

The simulation results are shown in Fig.2. Apparently with the increase of network size, the more chance that the network components have problems. With the properly integration of active actions and passive analysis, when the network size increased 1000% from small-sized network to medium-sized network; and further from medium-sized network to large-scale network, the corresponding detection time is just increased only 2 times (approximately from 10 to 20 seconds) and 3 times respectively (approximately from 20 to 60 seconds). For the detection rate and false positive rate, the change rate is within 10% with the increase of network size. As shown in Fig.2, there are no evident difference for different network topology.

V. INTERNET EXPERIMENTS

The motivation of this work is to tackle new challenges in overlay fault diagnosis. We are interested (1) to show the performance of **EUDiag** in the real system; (2) to prove collaboration with information sharing among overlay applications and overlay service providers an effective approach in overlay fault diagnosis.

<table>
<thead>
<tr>
<th>Planet-Lab Node Dist</th>
<th>OSP-1</th>
<th>OSP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>N. America (edu) (346)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>N. America (non-edu) (28)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S. America (18)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Europe (230)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Asia (138)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Oceania (9)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

A. Methodology

We implemented **EUDiag** on the Planet-Lab. Based on geographic locations, Planet-Lab nodes are mainly distributed into 5 zones: North America, Source America, Europe, Asia,
and Oceania zones. North America nodes can be further classified as EDU and non-EDU nodes. Thus, all Planet-Lab nodes can be classified into 6 categories as shown in TABLE II. We created two OSPs (denoted as OSP-1 and OSP-2) on Planet-Lab testbed and generated 3 test scenarios:

- Scenario 1: OSP-1 and OSP-2 randomly choose various number of nodes from each category respectively as shown in TABLE II.
- Scenario 2: OSP-1 only chooses North America nodes; however, OSP-2 chooses non North America nodes.
- Scenario 3: OSP-1 first chooses nodes from each category; then OSP-2 chooses nodes belonging also from each category but in different institutes, companies or countries from those nodes already selected by OSP-1.

In each scenario, for each OSP-i (i = 1, 2), we created three overlay applications (denoted as App-i1, App-i2 and App-i3) and each application selects 12 overlay application nodes. For each overlay application App-i-j (j = 1, 2, 3), it adopted two different topologies: well-distributed and random topology. For well-distributed topology, we evenly chose application nodes from each zone; for random topology, we randomly chose application nodes from all available overlay nodes. In all scenarios, each application randomly chooses one node per geographic category if possible as its application agent. Among all application agents, we randomly choose one as the monitoring agent. The information about selected application agents and monitoring agents is sent to all relevant nodes to report observed symptoms.

For each application, first it measured the topology among application nodes by simultaneously running “traceroute” and converted discovered networks (including unidentifiable network portions) to overlay component IDs. Each node sends the information about the discovered network (i.e. a serial of component IDs) to all destination nodes. There are $12 \times 11 = 132$ overlay links for each overlay application. For selected links, the source nodes will send UDP packets to the destination nodes. For each experiment, we measured 100 trials and each trial lasts 15 seconds. During a trial, each selected node sends 100 40-byte UDP packets with sequence number and sending time.

B. Experiment Results

1) Observation Incompleteness Penalty: For each overlay application, we control the Observation Ratio (OR) (the ratio of monitored overlay links to the total links in a given application). We change OR for each application increased from 10% to 100% with the increase rate 10%. In this way, the overall Observation Ratio of whole OSP is also controlled accordingly. We found that when OR is relatively low (10-30%), $EUDiag$ required significantly increased actions (intrusiveness) (320-470%) to detect faulty components.

2) Collaboration Gain: In our experiment scenario 1, we created two case studies: (1) OSP-1 and OSP-2 running $EUDiag$ independently; (2) OSP-1 and OSP-2 collaboratively running $EUDiag$. We repeated the same experiment 10 rounds and 10 times in each round for scenario 2 and 3. From Fig. 3, the collaboration gain in Scenario 1 and 3 are much higher

3) Posterior and Prior Factors in User Belief Revision: In Eq. 1, Posterior and Prior User Belief can be combined seamlessly and adjustable by two parameters: K and γ. Based on the general monitoring statistics presented in [4], overlay nodes are getting more and more reliable but still experiencing high fault probability. In our experiment in the Planet-Lab, K has been selected between 5-20 and γ is chosen between 1-3, which can make $EUDiag$ function to produce stable results.

VI. RELATED WORK

In our related work study, we focus on user-level network measurement and fault diagnosis tools/approaches particularly for overlay networks. In this section, we classify user-level fault diagnosis related work into the following categories:

Passive Approach: Various passive monitoring and event correlation models were proposed including rule-based analyzing system [21], model-based system, case-based diagnosing system and model traversing techniques. In [19], a model-based event correlation engine is designed for multi-layer fault diagnosis. In [15], coding approach is applied to deterministic model to reduce the reasoning time and improve system resilience. An interesting incremental event-driven fault reasoning technique is presented in [16] and [17] to improve the robustness of fault localization system.

Measurements Diagnosis Tools: Many end-to-end traffic measurement tools were proposed for monitoring packet loss and other path properties for problem diagnosis such as [30], [32], [31]. These tools are good for diagnosis a specific network property and not adequate as a general problem diagnosis in overlay networks. Recently, some researchers incorporate active probing into fault localization. In [18], an active probing fault localization system is introduced, in which pre-planned active probes are associated with system status by a dependency matrix. An on-line action selection algorithm is studied in [18] to optimize action selection. Most of these techniques causes an extensive intrusiveness due to active...
Diagnosis Framework: One of the most recent interesting work is the Tomography-based approach that estimates network performance parameters based on traffic measurement at a limited subset of the nodes [28], [26]. However, similar to previous tools, this is still purely active approach which usually requires extensive probing in order to achieve accurate results regardless of problem exists or not. Anther one is the Multiple Vantage Point Approach or PlanetSeer [29] that locates Internet faults by selectively and periodically invoking “traceroute” from multiple vantage points. The measurement model is manually managed and only matches the application domain direction of data flow. Unlike these approaches which use active monitoring constantly to discover problems when occurs, our approach exploits the correlation of naturally observed symptoms to identify problem or necessary actions are initiated for fine-grain diagnosis. To the best of our knowledge, EUDiag is the first user-level overlay fault diagnosis framework that integrates active monitoring with passive fault reasoning based on dynamic revising User Beliefs.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel User Belief based approach (called EUDiag) that could dynamically and incrementally encode user common belief with investigated overlay and underlay components, and it also seamlessly integrates passive and active fault reasoning in order to reduce fault detection time as well as improve the accuracy of fault diagnosis. In our future work, we will study symptom observation temporal factor and the inherent correlations between different types of symptoms and investigate how integrated symptom analysis and fault reasoning can improve the performance as well as the accuracy of overlay fault localization.

REFERENCES
[12] GEORGE J. LEE, LINDSEY POOLE. Diagnosis of TCP Overlay Connection Failures using Bayesian Networks SIGCOMM’06 Workshops September, 2006, Pisa, Italy